Application of Neural Network in Diagnosing Neuromuscular Disorder using EMG Signal

نویسندگان

  • Syed Irfan Ali
  • Syed Mohammad Ali
  • Syed Akbar Ali
چکیده

Since past few years, researchers have been concentrating on the classification of Electromyography Signal. This method is very convenient in diagnosing the neuro-muscular disorders, which consists of wide spread diseases affecting peripheral nervous system. Progressive muscle weakness is the major form of these disorders. Out of various proposed methods, scholars are commonly focusing on Neural Network for its accuracy. And the basic variant feature, Motor Unit Action Potential is selected for classification. Out of various available tools, this research uses Discrete Wavelet Transform as a tool for classification and for the training of N-Network, a multilayer feed forward neural network with back propagation algorithm is used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Classifier for Characterizing Motor Unit Action Potentials in Diagnosing Neuromuscular Disorders

Background: The time and frequency features of motor unit action potentials (MUAPs) extracted from electromyographic (EMG) signal provide discriminative information for diagnosis and treatment of neuromuscular disorders. However, the results of conventional automatic diagnosis methods using MUAP features is not convincing yet.Objective: The main goal in designing a MUAP characterization system ...

متن کامل

Identification of Neuromuscular Disorder by Classifying EMG Signal usingneural network

Since past few years, researchers have been concentrating on the classification of Electromyography Signal. This method is very useful in diagnosing the neuro-muscular disorders, which consists of wide spread diseases affecting peripheral nervous system. Progressive muscle weakness is the major form of these disorders. Out of various proposed methods, scholars are commonly focusing on Neural Ne...

متن کامل

Utilization of Levenberg-Marquardt based Neural Network Classifier in EMG signal Classification

Abstract— Electromyography (EMG) signal provides a significant source of information for identification of neuromuscular disorders. This paper presents an application of neural network classifier on classification and identification of different normal and auto aggressive actions of hands and legs. Eight features that are extracted from eight channel EMG signals representing these actions have ...

متن کامل

Genetics-based machine learning for the assessment of certain neuromuscular disorders

Clinical electromyography (EMG) provides useful information for the diagnosis of neuromuscular disorders. The utility of artificial neural networks (ANN's) in classifying EMG data trained with backpropagation or Rohonen's self-organizing feature maps algorithm has recently been demonstrated. The objective of this study is to investigate how genetics-based machine learning (GBML) can be applied ...

متن کامل

Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model

Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016